

Welcome to pytest-services’s documentation!

Contents

	Welcome to pytest-services’s documentation!

	Services plugin for pytest testing framework

	Install pytest-services

	Features

	Fixtures

	Infrastructure fixtures

	Service fixtures

	Utility functions

	Django settings

	Command-line options

	Example

	Contact

	License

	Internal API

	Authors

	Changelog

	2.2.1

	2.2.0

	2.1.0

	2.0.1

	2.0.0

	1.3.1

	1.3.0

	1.2.1

	1.2.0

	1.1.15

	1.1.14

	1.1.12

	1.1.11

	1.1.7

	1.1.3

	1.1.2

	1.1.0

	1.0.10

	1.0.8

	1.0.2

	1.0.1

	1.0.0

Services plugin for pytest testing framework

[image: _images/pytest-services.svg]
 [https://pypi.python.org/pypi/pytest-services][image: _images/pytest-services1.svg]
 [https://pypi.python.org/pypi/pytest-services][image: _images/master.svg]
 [https://coveralls.io/r/pytest-dev/pytest-services][image: _images/pytest-services2.svg]
 [https://travis-ci.org/pytest-dev/pytest-services][image: Documentation Status]
 [https://readthedocs.org/projects/pytest-services/?badge=latest]
Install pytest-services

pip install pytest-services

Features

The plugin provides a set of fixtures and utility functions to start service processes for your tests with
pytest [http://pytest.org]

Fixtures

	
	run_services

	Determines whether services should be run or not. False by default if not in distributed environment
(without pytest-xdist [https://pypi.python.org/pypi/pytest-xdist]). Can be manually set to True by overriding this fixture in your test config or
just by using –run-services command line argument (see below).

Infrastructure fixtures

	
	worker_id

	Id of the worker if tests are run using pytest-xdist [https://pypi.python.org/pypi/pytest-xdist]. It is set to local if tests are not run using
pytest-xdist [https://pypi.python.org/pypi/pytest-xdist] (with –dist command line option set to load).
Has a deprecated alias slave_id which will be removed in a future version.

	
	session_id

	Test session id. Globally unique, and of course also guaranteed to be different for potentially multiple test
sessions running on same test node via pytest-xdist [https://pypi.python.org/pypi/pytest-xdist].

	
	watcher_getter

	Function to instantiate test service watcher (popen object). Includes automatic finalization (exiting) of the
service process, and testing the service before returning the watcher from the function.
Example of usage for memcached service:

@pytest.fixture(scope='session')
def memcached(request, run_services, memcached_socket, watcher_getter):
 """The memcached instance which is ready to be used by the tests."""
 if run_services:
 return watcher_getter(
 name='memcached',
 arguments=['-s', memcached_socket],
 checker=lambda: os.path.exists(memcached_socket),
 # Needed for the correct execution order of finalizers
 request=request,
)

	
	services_log

	Logger used for debug logging when managing test services.

	
	root_dir

	Parent directory for test service artifacts (disk based). Set to /tmp by default.

	
	base_dir

	Base directory for test service artifacts (disk based), unique subdirectory of root_dir.
Automatically removed recursively at the end of the test session.

	
	temp_dir

	Temporary directory (disk based), subfolder of the base_dir.
Used for strictly temporary artifacts (for example - folder where files are uploaded from the user input).

	
	memory_root_dir

	Parent directory for test service artifacts (memory based). Main idea of having memory base directory is to
store performance-critical files there. For example - mysql service will use it to store database file, it speeds up
mysql server a lot, especially database management operations.
Set to /var/shm by default, with a fallback to ‘root_dir`. Note that if apparmor is running on your system, most
likely it will prevent your test service to use it (for example - mysql has it’s apparmor profile). You you’ll need
to disable such profile in apparmor configuration.
Example of disabling apparmor for mysqld:

sudo ln -s /etc/apparmor.d/usr.sbin.mysqld /etc/apparmor.d/disable/
sudo /etc/init.d/apparmor restart

	
	memory_base_dir

	Base directory for test service artifacts (memory based), unique subdirectory of memory_root_dir.
Automatically removed recursively at the end of the test session.

	
	memory_temp_dir

	Temporary directory (memory based), subfolder of the base_dir.

	
	lock_dir

	Lock files directory for storing locks created for resource assignment (ports, display, etc). Subfolder of
memory_root_dir.

	
	run_dir

	Process id and socket files directory (like system-wide /var/run but local for test session). Subfolder of
memory_root_dir.

	
	port_getter

	Function to get unallocated port.
Automatically ensures locking and un-locking of it on application level via flock.

	
	display_getter

	Function to get unallocated display.
Automatically ensures locking and un-locking of it on application level via flock.

	
	lock_resource_timeout

	Used in function lock_resource.
A maximum of total sleep between attempts to lock resource.

Service fixtures

	
	memcached

	Start memcached [http://memcached.org] instance.
Requires pylibmc installed or memcache indicated as an extra (pip install ‘pytest-services[memcached]’).

	
	memcached_socket

	Memcached unix socket file name to be used for connection.

	
	memcached_connection

	Memcached connection string.

	
	do_memcached_clean

	Determine if memcached should be cleared before every test run. Equals to run_services fixture by default.
Requires pylibmc installed or memcache indicated as an extra (pip install ‘pytest-services[memcached]’).

	
	memcached_client

	A pylibmc.Client instance bound to the service.
Requires pylibmc installed or memcache indicated as an extra (pip install ‘pytest-services[memcached]’).

	
	mysql

	Start mysql-server [http://dev.mysql.com/] instance.

	
	mysql_database_name

	MySQL database name to be created after initialization of the mysql service system database.

	
	mysql_database_getter

	Function with single parameter - database name. To create additional database(s) for tests.
Used in mysql_database fixture which is used by mysql one.

	
	mysql_connection

	MySQL connection string.

	
	xvfb

	Start xvfb [http://en.wikipedia.org/wiki/Xvfb] instance.

	
	xvfb_display

	Xvfb display to use for connection.

	
	xvfb_resolution

	Xvfb display resolution to use. Tuple in form (1366, 768, 8).

Utility functions

Django settings

In some cases, there’s a need of switching django settings during test run, because several django projects are tested
whithin the single test suite.
pytest_services.django_settings simplifies switching of django settings to a single function call:

	
	setup_django_settings

	Override the enviroment variable and call the _setup method of the settings object to reload them.

Example of usage:

conftest.py:

from pytest_services import django_settings

django_settings.clean_django_settings()
django_settings.setup_django_settings('your.project.settings')

Note that the nice project pytest-django [https://pypi.python.org/pypi/pytest-django] doesn’t help with the situation, as it’s single django project oriented, as
well as standard django testing technique. Single project approach works fine, as long as there are no fixtures to share
between them, but when there are fixtures to share, then you can get benefit of joining several django projects tests
into a single test run, because all session-scoped fixtures will be instantiated only once for all projects tests.
The benefit is only visible if you have big enough test suite and your fixtures are heavy enough.

Command-line options

	
	–run-services

	Force services to be run even if tests are executed in a non-distributed way (without pytest-xdist [https://pypi.python.org/pypi/pytest-xdist]).

	
	–xvfb-display

	Skip xvfb service to run and use provided display. Useful when you need to run all services except the xvfb [http://en.wikipedia.org/wiki/Xvfb]
to debug your browser tests, if, for example you use pytest-splinter [https://pypi.python.org/pypi/pytest-splinter] with or without pytest-bdd [https://pypi.python.org/pypi/pytest-bdd].

Example

test_your_test.py:

import MySQLdb

def test_some_mysql_stuff(mysql):
 """Test using mysql server."""
 conn = MySQLdb.connect(user='root')

Contact

If you have questions, bug reports, suggestions, etc. please create an issue on
the GitHub project page [https://github.com/pytest-dev/pytest-services].

License

This software is licensed under the MIT license [http://en.wikipedia.org/wiki/MIT_License]

See License file [https://github.com/pytest-dev/pytest-services/blob/master/LICENSE.txt]

© 2014 Anatoly Bubenkov, Paylogic International and others.

Internal API

Authors

	Anatoly Bubenkov

	idea and implementation

These people have contributed to pytest-services, in alphabetical order:

	Alessio Bogon

	Dmitrijs Milajevs

	Jason R. Coombs

	Joep van Dijken

	Magnus Staberg

	Michael Shriver

	Oleg Pidsadnyi

	Zac Hatfield-Dodds

Changelog

2.2.1

	#42: Retry on zc.lockfile.LockError in file_lock, use existing timeout kwarg (mshriver)

2.2.0

	#38: Retry to lock resource if zc.lockfile.LockError is raised. Fix needed for pytest-xdist. (StabbarN)

2.1.0

	#34: Deprecated slave_id fixture in favor of worker_id,
for compatibility with pytest-xdist 2.

2.0.1

	#20: Added workaround for issue with SysLogHandler.

2.0.0

	#23: Rely on zc.lockfile for lockfile behavior.

	#28: Fixtures now supports later versions of mysql and no longer
support versions of mysql prior to mysql --initialize support.

	#29: Fix issues with later versions of mysql where mysql_defaults_file
fixture would prevent startup of mysql.

	Fixed issue in test suite where mysql fixture was not tested.

	Removed pytest_services.locks.lock_file.

1.3.1

	Fix race condition causing when using port_getter/display_getter (youtux)

1.3.0

	Add request param to watcher_getter to have proper execution order
of finalizers (youtux).

1.2.1

	Swap kill and terminate in watcher_getter finalization, allowing
for a more polite SIGTERM for terminating child procs on Unix. See
#15 for details (jaraco)

1.2.0

	Make pylibmc an optional dependency, available as an extra (jaraco)

1.1.15

	Fixed hang with updated netcat-openbsd>=1.130.3 (joepvandijken)

1.1.14

	Use a different strategy to determine whether xvfb supports (youtux)

1.1.12

	use realpath for mysql base dir (bubenkoff)

1.1.11

	exclude locked displays for xvfb (bubenkoff)

1.1.7

	django settings fix (olegpidsadnyi)

1.1.3

	django 1.8 support (bubenkoff)

1.1.2

	old django support fix (olegpidsadnyi)

1.1.0

	django 1.7+ support (bubenkoff)

1.0.10

	removed auto artifacts cleanup (bubenkoff)

1.0.8

	fixed popen arguments (bubenkoff)

1.0.2

	added port and display getters (bubenkoff)

1.0.1

	Improved documentation (bubenkoff)

1.0.0

	Initial public release

Index

Internal API

 _static/up.png

nav.xhtml

 Table of Contents

 		
 Welcome to pytest-services’s documentation!

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

